Mach 1433

31 October 2023

$$
\text { What is } \frac{1}{2}+\frac{2}{3} ?
$$

Answer: $\frac{7}{6}$
$\left(\operatorname{not} \frac{1+2}{2+3}\right)$

Easy calculations:

- $\frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}$
- $\left[\begin{array}{l}a \\ b\end{array}\right]+\left[\begin{array}{l}c \\ d\end{array}\right]=\left[\begin{array}{l}a+c \\ b+d\end{array}\right]$
- $s\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}s a \\ s b\end{array}\right]$

We will never use these:

- $\frac{a+c}{b+d}$
- $\left[\begin{array}{l}a c \\ b d\end{array}\right]$

Surprising (?) formulas:

- $\frac{a}{b}+\frac{c}{d}=\frac{a d+b c}{b d}$
- $\left[\begin{array}{l}a \\ b\end{array}\right] \cdot\left[\begin{array}{l}c \\ d\end{array}\right]=a c+b d$
- $\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \cdot\left[\begin{array}{l}d \\ e \\ f\end{array}\right]=a d+b e+c f$
$\left[\begin{array}{l}a \\ b \\ c\end{array}\right] \times\left[\begin{array}{l}d \\ e \\ f\end{array}\right]=\left[\begin{array}{l}b f-c e \\ c d-a f \\ a e-b d\end{array}\right]$

Perpendicular

Two vectors are called orthogonal if their dot product is zero.

- For non-zero vectors, this means they are perpendicular (or normal). Why?

$$
\cos (\text { angle })=0 \quad \leftrightarrow \quad \text { angle }=90^{\circ}
$$

- The zero vector is orthogonal to every vector.

Give an example of a vector that is perpendicular to $v=i+9 j+4 k$.

(3) To find a vector that is perpendicular to the vector $\mathbf{v}=\mathbf{i}+9 \mathbf{j}+4 \mathbf{k}$, you can use the fact that two vectors are perpendicular if their dot product is equal to zero.
find other vectors that are perpendicular to \mathbf{v} by choosing different values for a, b, and c as long as they satisfy the equation $a+9 b+4 c=0$.

Calculate $(-36 i+4 j+9 k) \cdot(i+9 k+4 k)$ again.

So, you need to find a vector $\mathbf{u}=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ such that:

$$
\mathbf{u} \cdot \mathbf{v}=0
$$

erue

The dot product of two vectors is calculated as follows:

$$
\mathbf{u} \cdot \mathbf{v}=(a \mathbf{i}+b \mathbf{j}+c \mathbf{k}) \cdot(\mathbf{i}+9 \mathbf{j}+4 \mathbf{k})=a \cdot 1+b \cdot 9+c \cdot 4
$$

For the dot product to be zero, you can choose any values of a, b, and c that satisfy the equation:

$$
a+9 b+4 c=0
$$

Here's an example of a vector that is perpendicular to \mathbf{v} :
If you let $a=-36, b=4$, and $c=9$, you get:

$$
\mathbf{u}=-36 \mathbf{i}+4 \mathbf{j}+9 \mathbf{k}
$$

$\sin +\operatorname{coc}^{\prime}$

Now, when you take the dot product:
$\mathbf{u} \cdot \mathbf{v}=(-36 \mathbf{i}+4 \mathbf{j}+9 \mathbf{k}) \cdot(\mathbf{i}+9 \mathbf{j}+4 \mathbf{k})=-36 \cdot 1+4 \cdot 9+9 \cdot 4=0$
So, the vector $-36 \mathbf{i}+4 \mathbf{j}+9 \mathbf{k}$ is perpendicular to $\mathbf{v}=\mathbf{i}+9 \mathbf{j}+4 \mathbf{k}$. You could also find other vectors that are perpendicular to \mathbf{v} by choosing different values for a, b, and c as long as they satisfy the equation $a+9 b+4 c=0$.

Apologies for the typographical error in my previous response. Let's correct the calculation for the dot product of $(-36 \mathbf{i}+4 \mathbf{j}+9 \mathbf{k})$ and $(\mathbf{i}+9 \mathbf{j}+4 \mathbf{k})$:
$(-36 \mathbf{i}+4 \mathbf{j}+9 \mathbf{k}) \cdot(\mathbf{i}+9 \mathbf{j}+4 \mathbf{k})$

Now, let's compute the dot product correctly:
$(-36 \mathbf{i}+4 \mathbf{j}+9 \mathbf{k}) \cdot(\mathbf{i}+9 \mathbf{j}+4 \mathbf{k})=(-36 \cdot 1)+(4 \cdot 9)+(9 \cdot 4)=-36+$ $36+36=0$

So, the corrected dot product is indeed 0 , confirming that $(-36 \mathbf{i}+4 \mathbf{j}+9 \mathbf{k})$ is perpendicular to $(\mathbf{i}+9 \mathbf{j}+4 \mathbf{k})$.

What is $-36+36+36 ?$

I apologize for the mistake. The correct calculation of $-36+36+36$ is:
$-36+36+36=0$
So, the dot product of ($-36 \mathbf{i}+4 \mathbf{j}+9 \mathbf{k}$) and ($\mathbf{i}+9 \mathbf{j}+4 \mathbf{k}$) is indeed 0 , as previously stated.

Equations of shapes

There are two ways to think about, for example, $y=x^{2}$.

- For each specific x-value, you get a y-value, and this tells you one point on the curve.
- For any point (x, y) anywhere, we test whether $y=x^{2}$ is true for those numbers.

Equations of shapes

There are two ways to think about, for example, $y=x^{2}$.

- For each specific x-value, you get a y-value, and this tells you one point on the curve.
- For any point (x, y) anywhere, we test whether $y=x^{2}$ is true for those numbers.

Equations of shapes

There are two ways to think about, for example, $y=x^{2}$.

- For each specific x-value, you get a y-value, and this tells you one point on the curve.
- For any point (x, y) anywhere, we test whether $y=x^{2}$ is true for those numbers.

Equations of shapes

Instead of $y=x^{2}$, we can also describe the same shape using "parametric equations" in many ways. One example is

$$
x=\frac{1}{5} t^{3}, \quad y=\frac{1}{25} t^{6}
$$

where t is a parameter that can take any value in \mathbb{R}. (For this parabola, parametric equations are unnecessary, but for some shapes it is very helpful.)

$$
\begin{aligned}
& k=0 \rightarrow(x, y)=(0,0) \\
& k=1 \rightarrow(x, y)=(0.2,0.04) \\
& k=2 \rightarrow(x, y)=(1.6,2.56) \\
& k=-1.9 \rightarrow(-1.1664,1.3606) \\
& k=2.1544 \rightarrow(x, y)=(2.4)
\end{aligned}
$$

The line through point $\left(x_{0}, y_{0}, z_{0}\right)$ parallel to vector $\vec{D}=[a, b, c]$ can be described by the single vector equation

$$
\vec{r}=\vec{p}+t \vec{d}
$$

where $\vec{p}=\left[x_{0}, y_{0}, z_{0}\right]$, or by several scalar equations:

$$
\left\{\begin{array}{l}
x=x_{0}+a t \\
y=y_{0}+b t \\
z=z_{0}+c t
\end{array}\right.
$$

In both cases, the variable t is a parameter (sometimes s is used instead). The vector \vec{d} is called a direction vector for the line.

Planes

We usually use a parameter (t) to describe a line in 3D space.
A plane in space can be described by parametric equations, but we require two parameters!

The plane through the origin parallel to both \vec{a} and \vec{b} is described by

$$
[x, y, z]=t \vec{a}+s \vec{b} .
$$

If the plane goes through point \vec{p} (not necessarily the origin), then it's

$$
[x, y, z]=\vec{p}+t \vec{a}+s \vec{b}
$$

Planes

We can also describe the plane below as being perpendicular to a single vector.
How can we get an equation from this?

A vector perpendicular to a plane is called a normal vector for the plane.

Is $(-1,2,8)$ is on the plane through the origin with normal vector $[3,1,5]$?
IF the point $(-1,2,8)$ is on the plane through $(0,0,0)$ with normal vector $[3,1,5]$ then

- the arrow from $(0,0,0)$ to $(-1,2,8)$ is perpendicular to $[3,1,5]$.
- the vector $[-1,2,8]$ is perpendicular to $[3,1,5]$.
- the dot product $[3,1,5] \cdot[-1,2,8]$ equals 0 .
- $3(-1)+1(2)+5(8)=0$.
- $39=0$.

So we know that $(-1,2,8)$ is not on this plane.

IF the point $(4,-7,-1)$ is on the plane through $(0,0,0)$ with normal vector $[3,1,5]$ then

- the arrow from $(0,0,0)$ to $(4,-7,-1)$ is perpendicular to $[3,1,5]$.
- the vector $[4,-7,-1]$ is perpendicular to $[3,1,5]$.
- the dot product $[3,1,5] \cdot[4,-7,-1]$ equals 0 .
- $3(4)+1(-7)+5(-1)=0$.
- $0=0$.

So we know that $(4,-7,-1)$ is on this plane.

If the point (x, y, z) is on the plane through $(0,0,0)$ with normal vector $[3,1,5]$ then

- the arrow from $(0,0,0)$ to (x, y, z) is perpendicular to $[3,1,5]$.
- the vector $[x, y, z]$ is perpendicular to $[3,1,5]$.
- the dot product $[3,1,5] \cdot[x, y, z]$ equals 0 .
- $3 x+y+5 z=0$.

So " $3 x+y+5 z=0$ " is the equation for the plane through the origin normal to $[3,1,5]$!

Remember,

\vec{r} means $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

The plane in 3D through $(0,0,0)$ with normal vector \vec{n} has equation

$$
\vec{n} \cdot \vec{r}=0 .
$$

If \vec{h} is $[a, b, c]$, this eqn is $a x+b y+c z=0$.

Task: Give an equation for the plane through $(0,0,0)$ and $(4,6,1)$ and $(8,7,2)$.
We first need a vector $\vec{n}=[a, b, c]$ that is perpendicular to $[4,6,1]$ and perpendicular to $[8,7,2]$. OPTION 1: Find a solution to the system

$$
\begin{aligned}
& 4 a+6 b+c=0 . \\
& 8 a+7 b+2 c=0 .
\end{aligned}
$$

OPTION 2: Use the cross-product:

$$
\vec{n}=[4,6,1] \times[8,7,2]=[5,0,-20] .
$$

Answer: $[s, 0,-20] \cdot[x, y, z]=0$ means that
or $x-4 z=0$ or similar equations. In fact \vec{n} can be any non-zero scalar multiple of $[1,0,-4]$.

What if the plane does not go through $(0,0,0)$?
Is $(-9,8,2)$ is on the plane through $(4,1,1)$ with $\vec{n}=[3,1,5]$?
IF it is, then

- the arrow from $(4,1,1)$ to $(-9,8,2)$ is perpendicular to $[3,1,5]$.
- What is this arrow? Vector $\vec{u}-\vec{v}$ points
from the end of \vec{v}
to the end of \vec{u}.

Note: The tails (start) of \vec{u} and \vec{v} must be at the same place to use this method.

What if the plane does not go through $(0,0,0)$?

Is $(-9,8,2)$ is on the plane through $(4,1,1)$ with $\vec{n}=[3,1,5]$? IF it is, then

- the arrow from $(4,1,1)$ to $(-9,8,2)$ is perpendicular to $[3,1,5]$.
- the vector $([-9,8,2]-[4,1,1])$ is perpendicular to $[3,1,5]$.
- the dot product $[3,1,5] \cdot([-9,8,2]-[4,1,1])$ equals 0 .
- $3(-9-4)+1(8-1)+5(2-1)=0$.

What if the plane does not go through $(0,0,0)$?
(x, y, z)
Is $(-9,8,2)$ is on the plane through $(4,1,1)$ with $\vec{n}=[3,1,5]$? IF it is, then

- the arrow from $(4,1,1)$ to $(-9,8,2)$ is perpendicular to $[3,1,5]$.
- the vector $([-9,8,2]-[4,1,1])$ is perpendicular to $[3,1,5]$.
- the dot product $[3,1,5] \cdot([-9,8,2]-[4,1,1])$ equals 0 .
- $3(-9-4)+1(8-1)+5(2-1)=0$. $3(x-4)+1(y-1)+5(z-1)=0$

What if the plane does not go through $(0,0,0)$?

Is (x, y, z) is on the plane through $(4,1,1)$ with $\vec{n}=[3,1,5]$? IF it is, then

- $3(x-4)+1(y-1)+5(z-1)=0$.

The plane through $\left(x_{0}, y_{0}, z_{0}\right)$ perpendicular to $\vec{n}=[a, b, c]$ can be described by the vector equation

$$
\vec{n} \cdot(\vec{r}-\vec{p})=0
$$

where $\vec{p}=\left[x_{0}, y_{0}, z_{0}\right]$. Using vector \cdot and - , this can be re-written as

$$
a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

or, after a little algebra, as

$$
a x+b y+c z=d
$$

where $d=\vec{n} \cdot \vec{p}$. The vector \vec{n} is called a normal vector for the plane.

The "easy" line and plane tasks are

- from a point and normal vector, give an equation for a plane.
- from a point and direction vector, give and equation for a line.

The "hard" line and plane tasks is when you are not given a point and a norma//direction vector but must figure them out from other information.

There are also tasks asking about intersections. These usually involve solving a system of equations.

Give an equation without vectors for the plane through $(12,4,-3)$ normal to $[-2,8,8]$.
with vectors,

$$
\left[\begin{array}{c}
-2 \\
8 \\
8
\end{array}\right] \cdot\left(\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]-\left[\begin{array}{c}
12 \\
4 \\
-3
\end{array}\right]\right)=0
$$

Without vectors,

$$
\begin{array}{cc}
\text { or } & -2(x-12)+8(y-4)+8(z+3)=0 \\
\text { or } & -2 x+8 y+8 z=-16 \\
& x-4 y-4 z=8
\end{array}
$$

Find the intersection of

- the line through $(4,3,10)$ with direction vector $[1,2,-4]$ and
- the plane through $(5,0,6)$ with normal vector $[2,6,1]$.

Give an equation \qquad $x+$ \qquad $y+$ \qquad $z=$ \qquad for the plane through $(-2,7,6)$ parallel to both

Line 1: $\quad x=8+t, \quad y=9+4 t, \quad z=-7+10 t$
and
Line 2: $\quad x=10+3 t, \quad y=3 t, \quad z=7+7 t$.
We need

- a point on the plane. Use ($-2,7,6$).
- a normal vector for the plane.
- This vector will be perp. to both $[1,4,10]$ and $[3,3,7]$.
- We can use the cross product $[1,4,10] \times[3,3,7]=[-2,23,-9]$ for this.
From $-2(x+2)+23(y-7)-9(z-6)=0$ we get $-2 x+23 y-9 z=111$

There are many more line and plane tasks on List 2.

Now for a new topic......

Transformations of vectors

The functions you study in school and in Analysis 1 are usually from \mathbb{R} to \mathbb{R}, meaning the input and output are numbers.

An example of a function from \mathbb{R}^{2} to \mathbb{R}^{2} could be $f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}x-y \\ e^{x}\end{array}\right]$.
We can also write that as

$$
f(x \hat{\imath}+y \hat{\jmath})=(x-y) \hat{\imath}+e^{x} \hat{\jmath} \quad \text { or } \quad f(x, y)=\left(x-y, e^{x}\right) .
$$

Often, the word transformation is used instead of function when talking about vectors.

$$
f(x, y)=(x+y, 2 y)
$$

nice!

$$
f(x, y)=(x-y, y+\operatorname{Sin}[x])
$$

koo weird for this class

