Mach 14

31 October 2023

What is $\frac{1}{2} + \frac{2}{3}$

Easy calculations: $\circ \ \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$ $\begin{bmatrix} a \\ b \end{bmatrix} + \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a+c \\ b+d \end{bmatrix}$ \circ $s \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} sa \\ sb \end{bmatrix}$

We will never use these: a + c b + d acbd

Surprising (?) formulas: a + c = ad + bc b + d = bd $\circ \begin{vmatrix} a \\ b \end{vmatrix} \cdot \begin{vmatrix} c \\ d \end{vmatrix} = ac + bd$ $\begin{array}{c|c} a & d \\ b & e \\ c & f \end{array} = ad + be + cf$

Two vectors are called orthogonal if their dot product is zero.

0 Why?

cos(angle) = 0

The zero vector is orthogonal to every vector. 0

Per pendicular

For non-zero vectors, this means they are perpendicular (or normal).

angle = 90°

Give an example of a vector that is perpendicular to v = i + 9j + 4k.

\$

To find a vector that is perpendicular to the vector $\mathbf{v} = \mathbf{i} + 9\mathbf{j} + 4\mathbf{k}$, you can use the fact that two vectors are perpendicular if their dot product is equal to zero.

So, you need to find a vector ${f u}=a{f i}+b{f j}+c{f k}$ such that: ${f u}\cdot{f v}=0$

The dot product of two vectors is calculated as follows:

 $\mathbf{u} \cdot \mathbf{v} = (a\mathbf{i} + b\mathbf{j} + c\mathbf{k}) \cdot (\mathbf{i} + 9\mathbf{j} + 4\mathbf{k}) = a \cdot 1 + b \cdot 9 + c \cdot 4$

For the dot product to be zero, you can choose any values of *a*, *b*, and *c* that satisfy the equation:

$$a + 9b + 4c = 0$$

Here's an example of a vector that is perpendicular to v:

If you let a=-36, b=4, and c=9, you get:

 $oldsymbol{c}=9$, you get: $oldsymbol{u}=-36\mathbf{i}+4\mathbf{j}+9\mathbf{k}$

true

Now, when you take the dot product:

 $\mathbf{u} \cdot \mathbf{v} = (-36\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}) \cdot (\mathbf{i} + 9\mathbf{j} + 4\mathbf{k}) = -36 \cdot 1 + 4 \cdot 9 + 9 \cdot 4 = 0$

So, the vector $-36\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}$ is perpendicular to $\mathbf{v} = \mathbf{i} + 9\mathbf{j} + 4\mathbf{k}$. You could also find other vectors that are perpendicular to \mathbf{v} by choosing different values for a, b, and c as long as they satisfy the equation a + 9b + 4c = 0.

find other vectors that are perpendicular to $\mathbf{v} = \mathbf{1} + 9\mathbf{j} + 4\mathbf{k}$. Tou could also c as long as they satisfy the equation a + 9b + 4c = 0.

Calculate $(-36i + 4j + 9k) \cdot (i + 9k + 4k)$ again.

\$

Apologies for the typographical error in my previous response. Let's correct the calculation for the dot product of $(-36\mathbf{i} + 4\mathbf{j} + 9\mathbf{k})$ and $(\mathbf{i} + 9\mathbf{j} + 4\mathbf{k})$:

 $(-36\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}) \cdot (\mathbf{i} + 9\mathbf{j} + 4\mathbf{k})$

Now, let's compute the dot product correctly:

 $(-36\mathbf{i} + 4\mathbf{j} + 9\mathbf{k}) \cdot (\mathbf{i} + 9\mathbf{j} + 4\mathbf{k}) = (-36 \cdot 1) + (4 \cdot 9) + (9 \cdot 4) = -36 + 36 + 36 = 0$

So, the corrected dot product is indeed 0, confirming that $(-36\mathbf{i} + 4\mathbf{j} + 9\mathbf{k})$ is perpendicular to $(\mathbf{i} + 9\mathbf{j} + 4\mathbf{k})$.

What is -36 + 36 + 36 ?

I apologize for the mistake. The correct calculation of -36+36+36 is:

So, the dot product of $(-36\mathbf{i} + 4\mathbf{j} + 9\mathbf{k})$ and $(\mathbf{i} + 9\mathbf{j} + 4\mathbf{k})$ is indeed 0, as previously stated.

There are two ways to think about, for example, $y = x^2$.

- the curve.
- numbers.

Equalions of shapes

For each specific x-value, you get a y-value, and this tells you one point on

• For any point (x, y) anywhere, we test whether $y = x^2$ is true for those

There are two ways to think about, for example, $y = x^2$.

- 0 the curve.
- numbers.

Equalions of shapes

For each specific x-value, you get a y-value, and this tells you one point on

• For any point (x, y) anywhere, we test whether $y = x^2$ is true for those

	ی ک		66	6 6 6			6	@ @	60 (6	
							a a		6		6
											60
	9 6 6		66				•	@ @		90	
) () ()		6	6 6 (9 🞯 (00	00	@ (9 6	•
) () ()		6	6 6 () 🕝 🤅		66	66	6)	•
	d 🛈) 🎯 🎯	6	6 6 () 🎯 🕻		ی 📀	66	6)	0
• • •) () ()	0	6	66			00	66	6) ()	0
	o o o		6	6 6 6			۲	6 6	6	6	()
	6 6		6	6 6 (6	6	60 (6	(
			66	6 6 6			6	66	6	6	6
								~ ~			
			66) @ (00		00	N. C.
	8 6 6		e e		e e		• •			9 9	69
• • •) () ()		6	666) @ (66	6	6) ()	•
• 🕑 🎯 🌘	ð Ø đ		6	66			6	66	0	9 6	0
							8 6				60

There are two ways to think about, for example, $y = x^2$.

- the curve.
- numbers.

Equalions of shapes

For each specific x-value, you get a y-value, and this tells you one point on

• For any point (x, y) anywhere, we test whether $y = x^2$ is true for those

Instead of $y = x^2$, we can also describe the same shape using "parametric equations" in many ways. One example is

where t is a parameter that can take any value in \mathbb{R} . (For this parabola, parametric equations are unnecessary, but for some shapes it is very helpful.)

 $x = \frac{1}{5}t^3,$

$$y = \frac{1}{25}t^6$$

 $b = 0 \rightarrow (x,y) = (0, 0)$ $b = 1 \rightarrow (x,y) = (0.2, 0.04)$ $b = 2 \rightarrow (x,y) = (1.6, 2.56)$

 $t = -1.9 \rightarrow (-1.1664, 1.3605)$ $t = 2.1544 \rightarrow (x,y) = (2,4)$

The line through point (x_0, y_0, z_0) parallel to vector $\overrightarrow{D} = [a, b, c]$ can be described by the single vector equation

where $\vec{p} = [x_0, y_0, z_0]$, or by several scalar equations:

The vector d is called a direction vector for the line.

$$= \vec{p} + t \vec{d}$$

$$\begin{cases} x = x_0 + at \\ y = y_0 + bt \\ z = z_0 + ct \end{cases}$$

$$= z_0 + ct$$

In both cases, the variable t is a parameter (sometimes s is used instead).

We usually use a parameter (t) to describe a line in 3D space. A plane in space can be described by parametric equations, but we require two parameters!

is described by

the origin), then it's

The plane through the origin parallel to both \vec{a} and \vec{b}

$$[x, y, z] = t\vec{a} + s\vec{b}.$$

If the plane goes through *point* \vec{p} (not necessarily

 $[x, y, z] = \vec{p} + t\vec{a} + s\vec{b}.$

We can also describe the plane below as being perpendicular to a single vector.

How can we get an equation from this?

A vector perpendicular to a plane is called a normal vector for the plane.

Is (-1, 2, 8) is on the plane through the origin with normal vector [3, 1, 5]?

IF the point (-1, 2, 8) is on the plane through (0, 0, 0) with normal vector [3, 1, 5] then

- the arrow from (0,0,0) to (-1,2,8) is perpendicular to [3,1,5]. • the vector [-1, 2, 8] is perpendicular to [3, 1, 5]. • the dot product $[3, 1, 5] \cdot [-1, 2, 8]$ equals 0.
- 3(-1) + 1(2) + 5(8) = 0.

 $a_{39} = 0$

So we know that (-1, 2, 8) is *not* on this plane.

IF the point (4, -7, -1) is on the plane through (0, 0, 0) with normal vector [3, 1, 5] then

- the arrow from (0,0,0) to (4, -7, -1) is perpendicular to [3, 1, 5].
- the vector [4, -7, -1] is perpendicular to [3, 1, 5].
- the dot product $[3, 1, 5] \cdot [4, -7, -1]$ equals 0.
- 3(4) + 1(-7) + 5(-1) = 0.
- 0 = 0

So we know that (4, -7, -1) is on this plane.

If the point (x, y, z) is on the plane through (0, 0, 0) with normal vector [3, 1, 5] then

• the arrow from (0,0,0) to (x, y, z) is perpendicular to [3, 1, 5].

- the vector [x, y, z] is perpendicular to [3, 1, 5]. 0
- the dot product $[3, 1, 5] \cdot [x, y, z]$ equals 0. 0

•
$$3x + y + 5z = 0$$
.

So "3x + y + 5z = 0" is the equation for the plane through the origin normal to [3, 1, 5]!

> The plane in 3D through (0, 0, 0) with normal vector \vec{n} has equation

If n is [a,b,c], this equ is axtbytcz=0.

Remember,

\vec{r} means

 $\vec{n} \cdot \vec{r} = 0.$

We first need a vector $\vec{n} = [a,b,c]$ that is perpendicular to [4,6,1] and perpendicular to [8,7,2]. OPTION 1: Find a solution to the system 4a + 6b + c = 0. 8a + 7b + 2c = 0.OPTION 2: Use the cross-product: $\vec{n} = [4, 6, 1] \times [8, 7, 2] = [5, 0, -20].$

Answer: $[5,0,-20] \cdot [x,y,z] = 0$ means that 5x - 20z = 0

any non-zero scalar multiple of [1,0,-4].

Task: Give an equation for the plane through (0,0,0) and (4,6,1) and (8,7,2).

or x - 4z = 0 or similar equations. In fact n can be

What if the plane does not go through (0, 0, 0)?

Is (-9, 8, 2) is on the plane through (4, 1, 1) with $\vec{n} = [3, 1, 5]$? *IF* it is, then

the arrow from (4, 1, 1) to (-9, 8, 2) is perpendicular to [3, 1, 5]. 0 What is this arrow?

This exact slide, including the giant text, was on 9.10. A similar slide was shown on 16.10. Vector $\vec{u} - \vec{v}$ points from the end of \vec{v} to the end of u.

Note: The tails (start) u-v of u and v must be at the same place to use this method.

What if the plane does not go through (0, 0, 0)?

Is (-9, 8, 2) is on the plane through (4, 1, 1) with $\vec{n} = [3, 1, 5]$? IF it is, then

• the arrow from (4, 1, 1) to (-9, 8, 2) is perpendicular to [3, 1, 5]. • the vector ([-9, 8, 2] - [4, 1, 1]) is perpendicular to [3, 1, 5]. • the dot product $[3, 1, 5] \cdot ([-9, 8, 2] - [4, 1, 1])$ equals 0. 3(-9 - 4) + 1(8 - 1) + 5(2 - 1) = 0.

What if the plane does not go through (0, 0, 0)? (\times, \vee, z) Is (-9, 8, 2) is on the plane through (4, 1, 1) with $\vec{n} = [3, 1, 5]$? *IF* it is, then • the arrow from (4, 1, 1) to (-9, 8, 2) is perpendicular to [3, 1, 5]. • the vector ([-9, 8, 2] - [4, 1, 1]) is perpendicular to [3, 1, 5]. • the dot product $[3, 1, 5] \cdot ([-9, 8, 2] - [4, 1, 1])$ equals 0. 3(-9 - 4) + 1(8 - 1) + 5(2 - 1) = 0.3(x - 4) + 1(y - 1) + 5(z - 1) = 0

What if the plane does not go through (0, 0, 0)?

Is (x, y, z) is on the plane through (4, 1, 1) with $\vec{n} = [3, 1, 5]$? *IF* it is, then

3(x - 4) + 1(y - 1) + 5(z - 1) = 0.

The plane through (x_0, y_0, z_0) perpendicular to $\vec{n} = [a, b, c]$ can be described by the vector equation

where
$$\vec{p} = [x_0, y_0, z_0]$$
. Using vector

or, after a little algebra, as

ax + b

where $d = \vec{n} \cdot \vec{p}$. The vector \vec{n} is called a normal vector for the plane.

$$\vec{n} \cdot (\vec{r} - \vec{p}) = 0$$

\cdot and -, this can be re-written as

$$a(x - x_0) + b(y - y_0) + c(z - z_0) = 0$$

$$by + cz = d$$

The "easy" line and plane tasks are
from a point and normal vector, give an equation for a plane.
from a point and direction vector, give and equation for a line.

The "hard" line and plane tasks is when you are not given a point and a normal/direction vector but must figure them out from other information.

There are also tasks asking about intersections. These usually involve solving a system of equations.

[-2, 8, 8].

Give an equation without vectors for the plane through (12, 4, -3) normal to

 -2 \times 12

 With vectors,
 8 (9) -4 = 0

 8 2 -3

-2(x - 12) + 8(y - 4) + 8(z + 3) = 0-2x + 8y + 8z = -16

Find the intersection of

- the line through (4, 3, 10) with direction vector [1, 2, -4]and
- the plane through (5, 0, 6) with normal vector [2, 6, 1]. Ø

Answer: (2, -1, 18)

Give an equation x + y + z = for the plane through (-2, 7, 6)parallel to both Line 1: x = 8 + t, y = 9 + 4t, z = -7 + 10tand

Line 2: x = 10 + 3t, y = 3t, z = 7 + 7t.

Ne need

- o a point on the plane. Use (-2,7,6).
- o a normal vector for the plane.

 - This vector will be perp. to both [1, 4, 10] and [3, 3, 7]. • We can use the cross product $[1, 4, 10] \times [3, 3, 7] = [-2, 23, -9]$ for this.

From -2(x+2) + 23(y-7) - 9(z-6) = 0 we get -2x + 23y - 9z = 111

There are many more line and plane tasks on List 2.

Now for a new topic.....

The functions you study in school and in Analysis 1 are usually from \mathbb{R} to \mathbb{R} , meaning the input and output are numbers.

An example of a function from \mathbb{R}^2 to We can also write that as vectors.

$$\mathbb{R}^2$$
 could be $f\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}x-y\\e^x\end{bmatrix}$

 $f(x\hat{\imath} + y\hat{\jmath}) = (x - y)\hat{\imath} + e^{x}\hat{\jmath}$ or $f(x, y) = (x - y, e^{x})$.

Often, the word transformation is used instead of function when talking about

nice!

f(x,y) = (x - y, y + Sin[x])

too weird for this class